6. コンクリート舗装の解析

6.1. 荷重応力の計算

JCA Pave3D はもともとコンクリート舗装の構造解析用に開発されたので、こちらの方の機能が 充実している。コンクリート舗装の構造解析の特徴としては、コンクリート版の大きさが有限で あり、荷重位置によって応答が異なること、目地やひび割れの不連続があること、コンクリート 版と路盤は水平方向に付着していないこと、温度応力を計算する必要があることなどがある。

JCA Pave3D はこれらの点をすべて考慮できる。

例題4

400cm×500cm 厚さ28cm のコンクリート舗装の目地縁部に大型車後軸が作用している。また後軸の中心はコンクリート版の中央にある。この時にコンクリート版に生ずる最大曲げ応力およびたわみを計算せよ。ただし、大型車後軸の配置は図 6.1 に、構造および材料定数は表 6.1 のとおりである。

𝔄 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅					
コンクリート版					
厚さ(cm)	28				
弾性係数(MN/m ²)、ポアソン比	30000, 0.2				
密度(kg/cm ³)、線膨張係数(/℃)	0, 0				
深さ(cm)と温度(℃)	温度は考慮しない				
目地					
x、y、z 方向のばね係数(MN/m ³)	10、10、10				
それらの閾値	10、10、10				
コンクリート版と路盤の境界面					
x、y、z 方向のばね係数(MN/m ³)	100、100、1000000				
それらの閾値	10, 10, 10				
ダウエルバー	-				
長さ、配置間隔(cm)	70、40				
弾性係数、ばね係数(MN/m ²)	209000、400000				
中間層					
厚さ(cm)	5				
弾性係数(MN/m²)、ポアソン比	5000, 0.35				
密度(kg/cm ³)、線膨張係数(/℃)	0, 0				
深さ(cm)と温度(℃)	温度は考慮しない				
路盤					
厚さ(cm)	20				
弾性係数(MN/m ²)、ポアソン比	300、 0.35				
密度(kg/cm³)、線膨張係数(/℃)	0, 0				
深さ(cm)と温度(℃)	温度は考慮しない				
路床					
厚さ(cm)	400				
弾性係数(MN/m ²)、ポアソン比	80, 0.35				
密度(kg/cm ³)、線膨張係数(/℃)	0, 0				
深さ(cm)と温度(℃)	温度は考慮しない				

表 6.1 コンクリート舗装の構造

目地があるので、x方向に2枚、y方向に1枚とし、図6.2のような構造モデルとなる。

図 6.2 例題 4 の構造モデル

ここで注意すべきことは、目地および境界面におけるデータ入力である。

図 6.3 に示す目地のページにおいて、ダウエルを用いる場合には一番上のリストボックス[目地 剛性]から[ダウエル有]を選択する。また、境界面では一番上のリストボックス[付着の程度]から[付 着なし、はがれなし]を選択する。

日地剛性	付着の程度		
伝達有り	付着有り		
材料定数分のエル市り	材料定数 付着なし、はがれるし		
×方向のタウエル悪し	×方向のバネ(MN/m3) 100		
y方向のバネ(MN/m3) 10	y方向のバネ(MN/m3) 100		
z方向のバネ(MN/m3) 10	z方向のバネ(MN/m3) 1000000		
×方向のはがれ閾値(cm) 10	×方向のはがれ閾値(cm) 10		
y方向のはがれ閾値(cm) 10	y方向のはがれ閾値(cm) 10		
z方向のはがれ閾値(cm) 10	z方向のはがれ閾値(cm) 10		
ダウェルバー - Y方向目地 直径(cm) 25 目地開き(cm) 1 長さ(cm) 70 配置間隔(cm) 40			
X方向目地			
直径(cm) 2.5 目地閉ぎ(cm) 1			
長さ(cm) 70 配置間隔(cm) 40			
弹性係数(MN/m2) 209000			
支持係数(MN/m2) 400000			

図 6.3 目地および境界面の設定

のちの疲労度の計算に用いるので、x=5.1m における y 方向のたわみ形状と応力分布を求めてお く。[Data]-[List]で、図 6.6 のウインドーから Uz、Sx、Sy、Sz を 2 して、x=5.0、 y=Non、 z=-0.28 で[Execute]ボタンを押す。表示されたら、[Save]ボタンでリストに表示されたデータをテキストデ ータ(*.xy)として保存する。そのデータを表計算ソフトで整理したものが図 6.7、表 6.2 である。

図 6.6 数値データの保存

凶 6.7	応力分布

表 6.2 数値データの一覧(一部)							
уу	Uz	Sx	Sy	Sz			
0. 2	-3.48E-04	7.76E-02	1.10E-02	2.84E-02			
0.6	-3.74E-04	1.07E-01	7.59E-02	4.56E-02			
1	-3.99E-04	1.48E-01	2.87E-01	3.86E-02			
1.2	-4.09E-04	1.51E-01	5.15E-01	6.26E-02			
1.3	-4.12E-04	1.72E-01	5.78E-01	7.08E-02			
1.4	-4.14E-04	1.81E-01	5.04E-01	7.84E-03			
1.5	-4.14E-04	1.45E-01	3.03E-01	6.52E-02			
1.85	-4.13E-04	1.20E-01	5.29E-02	4.07E-02			

※単位は:距離、たわみはm、応力はMN/m²

また荷重については、大型車後軸の配置を入力していくのが面倒なので、既存のデータを用い る。図 6.4 の[荷重]ページで、[読み込み]ボタンをクリックする。すると、大型車後軸のデータが あるので、これを読み込む。このままだと位置がずれているので移動する。[移動]ボタンをクリッ クし、x 方向および y 方向の移動量を入力する。この移動量はすべてのタイヤ接地面に作用する ため、現在のタイヤ接地面を一気に移動することができる。また、複雑な荷重配置のデータを作 成したのち保存すれば、それを別の解析で読み込んで使うことができる。

図 6.4 荷重配置データの読込みと荷重の移動

以上でデータ入力が完了したので、"ex04.msh"という名前で保存し、要素分割、構造解析を順 番に実行する。計算が終わったら結果表示から[Graph]-[Contour]-[S3]によって、図 6.5 のような最 大主応力のコンターを表示させる。画面上面に最大曲げ応力の値とその位置が表示される。この 場合 x=5.00、 y=3.10、 z=-0.28 の位置に最大主応力 5.805e-01MN/m²である.これは荷重直下のコ ンクリート版下面の y 方向に生ずる曲げ応力である。このことは、[Graph]-[Contour]-[Sy]で表示し てみると、Sy の最大値と一致することからわかる。

図 6.5 最大主応力のコンター